Beating The System:
A Smorgasbord
Of GDI Wonders

by Dave Jewell

s all Delphi programmers

know, the VCL framework
gives us a convenient wrapper
around much of Windows, provid-
ing a programming model which is
far simpler and more convenient to
work with than the underlying API.
The way in which Borland are
currently re-implementing a large
subset of the VCL library on top of
Qt (the CLX framework which will
form part of Delphi for Linux) is a
testimonial to the way in which
relatively few Windows-specific
artefacts were exposed at the VCL
programming level. MFC, of
course, is a very different kettle of
fish.

Having said all that, it can’t be
denied that there will always be
times when it becomes necessary
to hit the underlying APl in order to
accomplish things that couldn’t be
done with the VCL library alone. In
this article, 'm going to look at
some of the more interesting parts
of the GDI which aren’t accessible
at the VCL level. Please bear in
mind that all the code snippets
discussed here have been tested
under Windows 2000 only. If you

0 Listing 1

procedure TForml.GetDisplayModes;
var

Idx: Integer;

DevMode: TDeviceMode;

PMode: PDeviceMode;

Item: TListItem;
begin

Idx := 0;

want to try things out on other
platforms, your mileage may vary.

Display Mode Enumeration
It’s sometimes useful to be able to
determine programmatically what
display resolutions are available,
and to switch to a new display
resolution under program control.
A sophisticated drawing program
might offer to switch to a higher
resolution if it determines that the
current screen layout is going to be
cramped, or a screensaver which
uses palette animation might need
to switch down to a display mode
that makes use of palettes. Then
again, you might want to write your
own version of Microsoft’s
QuickRes application which sits in
the taskbar tray area and allows
instant reconfiguration of display
mode.

The key to display mode enu-
meration is a GDI routine called
EnumDisplaySettings, the function
prototype of which is given below:

function EnumDisplaySettings
(1pszDeviceName: PChar;
iModeNum: DWORD;
var 1pDevMode: TDeviceMode):
BOOL; stdcall;

while EnﬁmDisp]aySettings (Ni1, Idx, DevMode) do begin

New (PMode);

PMode” := DevMode;

Item := Modes.Items.Add;
Item.Data := PMode;
Item.Caption :=

Format('%d * %d', [DevMode.dmPelsWidth, DevMode.dmPelsHeight]);
Item.SubItems.Add (IntToStr (DevMode.dmBitsPerPel));
if not (DevMode.dmDisplayFrequency in [0, 1]) then
Item.SubItems.Add (IntToStr (DevMode.dmDisplayFrequency) + ' Hz')

else

Item.SubItems.Add ('- device default -');
if SameMode (DevMode, CurMode) then Modes.Selected := Item;

Inc (Idx);
end;
end;

50

The Delphi Magazine

Display Properties 21x|

Backgtound | Soreen Saver | Appearance | Web | Effects Settings |

Display
Dell D1226H on NYidia Riva TNT

LColor Screen area
’7 ue Color [32 bit) ’7Less '_J_ More

1152 by 864 pixels

Iroubleshaat.. Adyanced.. I
QK I Cancel | el I

0 Figure 1: It turns out that
much of the functionality of
the Control Panel's Display
Settings applet is relatively
easy to emulate, once you
know how to enumerate the
available display modes on
your graphics card.

The first parameter, 1pszDevice-
Name, is used to specify the name of
the display device that we are
interested in. You can pass a value
of Ni1 here in order to indicate the
current display device. You can
think of the next parameter,
iModeNum, as an index into the avail-
able display modes: pass 0 to get
information pertaining to the first
display mode, 1 for the next, and so
forth. There are also a couple of
special values which can be
passed via this parameter; these
provide information relating to the
current display mode and the
mode information as stored in the
registry. You can find more infor-
mation on this in the Microsoft
SDK documentation.

The final parameter, 1pDevMode,
is a reference to a record of type
TDeviceMode through which all the
display information is passed. If
you look at the definition for
TDeviceMode in the WINDOWS.PAS
unit, you will probably be sur-
prised at just how much informa-
tion gets returned here. It also
includes entries such as dmPaper-
Length and dmPaperWidth which
demonstrate that this low-level
data structure is used not only to
communicate with the graphics
adaptor but with printer devices
as well. Enumeration continues
until a value of 0 is returned from

Issue 63

the call to EnumDisplaySettings, at
which point we know that all avail-
able display modes have been
enumerated. You can see an exam-
ple of how to use this function in
Listing 1.

This code has been taken
from a working program, called
ENUMDISPLAY .EXE, the complete
source code for which is included
on this month’s cover disk. As you
can see, the code repeatedly calls
the EnumDisplaySettings routine,
passing an index value which
increments by one each time
around the loop. If a new display
mode is found, then a complete
TDeviceMode structure is allocated
on the heap, and a pointer to this
structure is saved into the Data
field of the associated TListItem. Of
course, this may be over the top for
some applications, it’s highly
unlikely that you’d be interested in
more than a fraction of the fields in
the TDeviceMode data structure.

The dmPelsWidth and dmPels-
Height fields contain the pixel
width and height (respectively) of
the display mode. Incidentally, if
you’re wondering what a ‘pel’ is, |
believe this is a historical hang-
over from IBM terminology and
stands for a ‘Picture Element’, it’s
basically just a pixel. The
dmBitsPerPel field indicates how
many bits are required for storing a
single pixel. This will be 8 for 256
colour systems, 16 for High Color
(65,536 colours) systems and 32
for True Color (4,294,967,296
colours) displays.

Finally, dnDisplayFrequency gives
the vertical refresh rate for the
given display mode. In general, the
higher the refresh rate, the more
flicker-free will be the screen dis-
play, but bear in mind that if you
push some older monitors too far,
you could end up with a very dead
monitor! You have been warned:
don’t blame me if your monitor dies!
Also, it’s worth noting that the
dmDisplayFrequency field will some-
times return a value of 0 or 1. This
obviously doesn’t correspond to a
refresh rate in Hertz! Rather, it
simply indicates that this display
mode uses the default hardware
refresh rate of the device. This is
reflected in Listing 1.

November 2000

+I" Enum Display Properties Demo

=0l

u Flgure 2: i Avallable Modes:
Here IS the dlsplay mode Resolution | Bitz Par Pixel | Refrash Bate B
enumerator program in || is-ses 5 e
H H 1152 * 864 16 FO0H
action. Notice that each 1152+ 64 15 et J
possible pixel width and | |]1Z.% " Tone
H H H 1152 * 864 16 100 H.
height combmgtl_on D 1oiHz
has several variations,
/| 1152 * 864 a2 75H
cqrrespondlng to 1152 % 884 a2 s
different vertical refresh | |15z o 3 100 Hz
1280 = 1024 8 BOHz
rates. 1240~ 1024 g 70Hz
12801024 g 72Hz
12801024 g 75 Hz
12801024 g 85 Hz
1

1280

1024

E E0Hz -

Obviously, it’s alsoniceif | |5
your program can deter-

mine which of the available
display modes is the one currently
in use. [did this by writing another
routine, SameMode, which tests two
display modes for equivalence. It
does this by comparing the pixel
width and height, colour depth and
vertical refresh frequencies. This
is shown in Listing 2.

Of course, this raises the ques-
tion of how the program gets its
hands on the current video mode
metrics? As a Delphi developer,
you could always use Screen.Width
and Screen.Height to get the screen
dimensions, and a little jiggery-
pokery with Canvas.Handle and
GetDeviceCaps would get you the
number of bits per pixel, but what
about refresh rate?

It turns out that is also available
from the GetDeviceCaps routine
(use an index of VREFRESH) but a
simpler alternative is just to pass
the special index value of Enum_Cur-
rent_Settings to the EnumDisplay-
Settings routine. This will give you
acomplete TDeviceMode record that
corresponds to the current display
mode. Unfortunately, I couldn’t
find the value of Enum_Current_
Settings anywhere in Borland’s
WINDOWS.PAS file (Delphi 5 ver-
sion) but, after a little hacking

around inside Windows, I estab-
lished that this constant is equal to
$FFFFFFFE. This gives us the
program initialisation code shown
in Listing 3.

You can see the result running in
Figure 2. As you’ll notice, the pro-
gram provides an exhaustive list of
all the available display modes,
together with the colour depth and
refresh rate in each case. Notice
also that the code has highlighted
the current video mode.

Setting A New Display Mode
So what about the situation where
we want to change the display
mode? This is done via another
little-used GDI routine called
ChangeDisplaySettings:

function ChangeDisplaySettings
(var 1pDevMode: TDeviceMode;
dwFlags: DWORD): Longint;
stdcall;

Again, this routine takes a refer-
ence to a TDeviceMode data struc-
ture which is used to specify the
wanted mode. At this point you’ll
appreciate why [scrupulously
cached all those TDeviceMode data
structures back in Listing 1. If this

function TForml.SameMode (Model, Mode2: TDeviceMode): Boolean;

begin
Result

:= (Model.dmPelsWidth = Mode2.dmPelsWidth) and

(Model.dmPelsHeight = Mode2.dmPelsHeight) and
(Model.dmBitsPerPel = Mode2.dmBitsPerPel) and
(Model.dmDisplayFrequency = Mode2.dmDisplayFrequency);

end;

0 Above: Listing 2

00 Below: Listing 3

procedure TForml.FormCreate(Sender: TObject);

const
Enum_Current_Settings = $FFFFFFFE;
begin

EnumDisplaySettings (0, Enum_Current_Settings, CurMode);

GetDisplayModes;
end;

The Delphi Magazine

51

hadn’t been done, then it would
have been necessary to build a
TDeviceMode data structure from
scratch for passing to the
ChangeDisplaySettings routine.
Well, maybe: it would probably be
OK to get the TDeviceMode corre-
sponding to the current display
mode, make a copy of it, plug the
required resolution, colour depth
and refresh info into the new data
structure and use that, but we may
as well do things properly.

Bear in mind that, when specify-
ing a new display mode, you need
to give some attention to the
dmFields field of the TDeviceMode
record. This is a set of bit flags that
tell the GDI which fields of the
record are significant when chang-
ing mode, as shown in Listing 4.

Because we're setting all four of
these values, the dmFields mask is
set to be the bitwise 0R of these
four constants.

Warning: because we’re specify-
ing a new refresh rate, this does
mean you could end up with a dead
monitor, as I mentioned earlier. If
you've got any doubts about giving
this capability to your end-users,
then don’t include DM_Display-
Frequency in the dmFields flag.

The second parameter to
ChangeDisplaySettings is another
set of bitwise flags which specify
the way in which the display mode
should be changed. Most typically,
you’d pass cds_UpdateRegistry as
the flag value since this not only
changes the display mode, but it
also writes the display mode set-
tings to the registry so that the

0 Listing 5

procedure TForml.ModesDb1Click(Sender: TObject);

var
Item: TListItem;
ModeStr: String;
NewMode: TDeviceMode;
DevMode: PDeviceMode;
begin
Item := Modes.Selected;
if Item <> Nil then begin
DevMode := Item.Data;
with DevMode” do begin

DM_PelsWidth >
DM_PelsHeight >
DM_BitsPerPel >
DM_DisplayFrequency >

same mode will be used on the next
reboot. These display mode set-
tings are stored on a per-user
basis, but if you have adequate
access privileges, you can include
the cds_Global which will update
display mode settings for all users.
The cds_Test flag causes Windows
to test if the specified graphics
mode can be set without actually
making any change, whereas
cds_NoReset saves display mode
changes to the registry, again,
without actually changing the dis-
play mode there and then. There
are various other possible flag
values, which you can read about
in the SDK documentation.
Putting this together, we get the
code shown in Listing 5. The rou-
tine starts off by confirming that
the user actually does want to
make the specified display mode
change. If so, a new TDeviceMode
record is initialised and the
all-important dmFields field is set
up as discussed earlier. Notice that
ifnovertical refresh rate was speci-
fied in the device mode record,
then we take care not to ‘OrR-in’ the
DM_DisplayFrequency flag. If it were
not for this code, you might find
yourself asking the display hard-
ware to use a refresh rate of 1 Hz!
And that’s about it as far as dis-
play mode changes are concerned.
As mentioned above, the complete
executable code and source is
included on this month’s disk.

begin

end;

The screen width field is significant
The screen height field is significant
The bits per pixel field is significant
The vertical refresh frequency field is significant

0 Listing 4

I haven’t bothered to wrap the
code up into a reusable compo-
nent, although that would be very
easy to do. You'll soon discover
(as does anyone who changes
their display mode settings!) that
Windows Explorer routinely man-
gles the layout of icons on your
desktop each time the screen’s
pixel resolution changes, but
that’s not my fault. Rather, saving
and restoring your desktop layout
is something that we’ll look at in a
future issue.

Crawling Ant Effects
[currently have a large wasps nest
in the roof space just above my
office, so you can well imagine
that I don’t much like talking about
insects right now! But the ‘crawling
ants’ effect is something that many
developers wish to exploit sooner
or later, and in this section I will
discuss some ways of achieving it.
In case you’re not familiar with
what I'm talking about, ‘crawling
ants’ (also know as ‘marching
ants’) is a common nickname used
to describe the animation effect
when a selection rectangle is cre-
ated in a drawing program. Many
programs cheat by simply using a
static ‘rubber-band’ effect, but if
you want to do the job properly,
then you should consider having
an animated selection rectangle

NewMode.dmFields or DM_DisplayFrequency;
case ChangeDisplaySettings (NewMode,
cds_UpdateRegistry) of
Disp_Change_Successful:

ShowMessage('The display mode has been ‘+
‘successfully changed');
Modes.Selected := Item;

Disp_Change_Restart:
if MessageDlg('Need to reboot for display ‘+

ModeStr := Format(
'Switch display mode to %d * %d, (%d bpp',
[dmPelsWidth, dmPelsHeight, dmBitsPerPell);
if not (dmDisplayFrequency in [0, 11) then
ModeStr := ModeStr +

Format(', %d Hz refresh', [dmDisplayFrequencyl);

if MessageDlg (ModeStr + ') ?', mtConfirmation,
mbOKCancel, 0) = mrOK then begin
NewMode := DevMode”;
NewMode.dmFields := dm_PelsWidth or
dm_PelsHeight or dm_BitsPerPel;
if not (dmDisplayFrequency in [0, 1]) then
NewMode.dmFields :=

52 The Delphi Magazine

‘mode change to take effect. Do it now?',
mtConfirmation, mbOKCancel, 0) = mrOK then
ExitWindowsEx (ewx_Reboot, 0);
Disp_Change_BadMode, Disp_Change_Failed:
ShowMessage ('Trouble at ''mill: display mode ‘+
d ‘change failed or not supported');
end;

end;

end;
end;
end;

Issue 63

" AntsNest

which looks as if a line of ants are
slowly marching around the bor-
ders of the rectangle.

The key to the ‘crawling ants’
effect is a somewhat weird GDI
routine called LineDDA, the function
prototype for which is:

function LineDDA(
X1, Y1, X2, Y2: Integer;
Proc: TFNLineDDAProc;
Data: Integer): BOOL;
stdcall;

When ‘Pascalising’ Windows API
routines, Borland generally give
sensible names to the function
arguments. However, LineDDA is
one that never received this
honour. Accordingly, the above
function prototype has been
slightly massaged by me for the
sake of clarity, compared with the
original in WINDOWS.H.

The first four arguments specify
the start and end points of a line
that’s to be drawn by the function.
You'll notice that in this case, no
device context is supplied to
LineDDA, which is obviously very
unusual for a line-drawing routine!
The reason is that we (ie, the appli-
cation program) are responsible
for drawing the lines rather than
Windows itself. For each calcu-
lated point on the line, the GDI calls
an application-supplied routine to
perform the actual drawing. By get-
ting in on the act on a per-pixel
basis, this gives us the possibility
of creating custom line effects and
line animations.

The fifth parameter to LineDDA is
a pointer to the call-back routine,
the function prototype for which is
given below:

54

O Figure 3: You might not
be able to see it, but the
selection rectangle in this
screenshot is animating as
the 'ants' crawl around the
borders of the selected area.
The highlighted panels are
simply used to indicate what
is selected and what is not.

procedure LineDDAProc(
X, Y: Integer;
Data: Integer); stdcall;

As with other callback routines,
this must be declared as a stdcall
routine in order for it to be prop-
erly called from Windows. The X
and Y arguments obviously corre-
spond to a specific point on the
line, whereas the Data argument
corresponds to the final argument
to LineDDA: it enables us to pass an
application-defined value which is
accessible to the callback routine.
Since Windows API callback rou-
tines can’t be methods of Delphi
objects, this is a great way of recov-
ering the ‘OOP context’ within our
callback.

The sample program that |
developed for this article,
CRAWLINGANTS.EXE, was
inspired by an article in the
September 1996 issue of The
Unofficial Newsletter Of

procedure TAntsNest.DrawHotRect;
const
StartMask: Byte = $80;
begin
StartMask := StartMask shr 1;
if StartMask = 0 then
StartMask := $80;
DashMask := StartMask;
with HotRect do begin

Delphi Users. My program works in
basically the same way, but it’s a
considerably simplified and opti-
mised version of the original code,
which you can find at www.undu.
com/DN960901/00000008.htm.
You can see the program run-
ning in Figure 3. Unlike the original,
I've used panel components as the
‘selectable objects’ in the form
window. Whenever you use the
mouse to select one or more
panels, the selected items turn
yellow to provide a visual indica-
tion of their selected state. At the
same time, the selection rectangle
begins animating to show the
selected region. In a real world
drawing program, each of the
items on a form would typically be
aDelphi object, and you might pro-
vide a virtual method by means of
which the selection state of the

0 Figure 4: This is a close-up of
the dot/dash that results from
using a mask value of $A0.
See the text for more details
of how to come up with other
dot/dash patterns.

LineDDA (Left, Top, Right, Top, @LineDDAProc, Integer (Self));
LineDDA (Right, Top, Right, Bottom, @LineDDAProc, Integer (Self));
LineDDA (Right, Bottom, Left, Bottom, @LineDDAProc, Integer (Self));
LineDDA (Left, Bottom, Left, Top, @LineDDAProc, Integer (Self));

end;
end;

0 Above: Listing 6

O Below: Listing 7

procedure LineDDAProc (X, Y: Integer; Self: TAntsNest); stdcall;

const

DotPattern: Byte = $a0;
var

C: Integer;
begi

gin
with Self do begin
DashMask := DashMask shl 1;
if DashMask = 0 then

DashMask := 1;

if (DashMask and DotPattern) <> 0 then
C := Color

else
C := clBlack;

SetPixel (Canvas.Handle, X, Y, ColorToRGB (C));

end;
end;

The Delphi Magazine

Issue 63

object could be turned on or off. It
would then be up to the individual
object (be it a rectangle, ellipse,
integrated circuit, dining table, or
whatever) to show its selection
state in an appropriate manner.
The Delphi IDE simply draws ‘grab
handles’ around selected items on
the design-time form.

The speed at which the selection
rectangle animates is controlled by
the TTimer component which
drives the animation. I chose an
interval of 50 milliseconds or 20
times per second. The timer’s
OnTimer event handler simply calls
the routine shown in Listing 6.

Each time this routine gets
called, we want to redraw the
selection rectangle, but with the
‘ants’ having advanced by one foot-
step, so to speak! This is controlled
by the StartMask variable which
starts at $80, and progressively
shifts down to 1 at which point it’s
reinitialised to $80. This effectively
gives us eight possible ‘states’ that
the selection rectangle can be in.
For each of those states, we need to
start drawing the differently col-
oured dashes at a progressively
different pixel position so as to get
the effect of smoothly marching
ants.

The current selection rectangle
is stored in the HotRect variable,
and this is used to issue four sepa-
rate calls to the LineDDA routine,
one for each side of the rectangle.
As you'll see, Self is passed as the
final parameter to LineDDA in each
case, as well as specifying LineDDA-
Proc as the actual drawing routine.

Inside LineDDAProc (Listing 7),
the DashMask variable is used within
the drawing of each line (remem-
ber, DrawHotRect gets called on
each timer tick to draw the entire
rectangle, but LineDDAProc is called
for each pixel that needs to be
drawn) to decide whether each
pixel should be black or the same
colour as the form. The original
code effectively used a value of $E0
for the DotPattern mask, but if you
experiment with different values of
this mask, you’ll be able to get
more interesting patterns of dots
and dashes. A value of $A0, for
example, gives you a nice big ant
followed by a baby one! You can

November 2000

Digging Deeply Into Delphi DCUs: An Update

My, how time flies! It's now been almost 18 months since my original three-part article
in The Delphi Magazine which discussed the internals of DCU files. Although the infor-
mation | presented was admittedly incomplete, | can say that, as far as | know, nothing
else had previously been published which attempted to describe the DCU file format in
any detail. Since those articles were published, a number of other folks have taken the
understanding of the DCU file structure a good deal further, and | flatter myself that |
had some small part to play in making this happen. If you want to catch up with the free
tools that are available, here’s a snapshot of the current state of play.

Probably the most impressive Delphi Decompiler around at the moment is DeDe,
which of course stands for ‘Delphi Decompiler’. You can find DeDe at www.balbaro.
com. Figure 5 shows an example of DeDe peeking inside a Delphi executable, in this
case the Image Editor program which comes as part of the Delphi package. Asyou'll see
from the screenshot, DeDe has identified all the classes (not just form classes) used
inside the program, along with all the units that are linked into the code. DeDe pro-

Delphi version: D4

rIEIEE

!!!’!!EE

(£

Thinking [imaged exe 520704 bytes [4

vides another view which lets you see the various .DFM files as human-readable text,
which can then be pasted into an IDE design-time form while in ‘View as Text’ mode.
This essentially makes it
pOSSibIe to extract a - |DeDe v2.40 (c) 1999-2000 by DaFixes =lol=|
complete Delph| form File Dumpers Tools Options About | "
rogram Files\BorlandDelphiSiBin\image < 2 Tocess mageci
oo & TrrEhEd app“ca_ ‘|C.\P aram FileshBorland D elphiS' Bintimag: Jﬁ P
tion, although you'd [Geseciis| Foms | Preceduss || Foel | Expors |
. [Class Name [Uit Name [selPi [DFM Difset
ObVIOUS|y need to recre- EEITAbouBon Abu‘ut ooasstwc 090_75;3__0% o it
ate any associated event AErle e D043F200. 00000000 ¢ P [Rpok 5
TBasicAction Classes 0040CET4 00000000 Activel
handlers. TBevel Ex(Cis 00443089 00000000 R
TBitmap Graphics 00414728 00000000 BmpPron
Perha ps the most TBitmapCanvas Graphics 00419748 00000000 Bullons
TBitmapk ditor ImgClass 00455580 00000000 Classes
impressive feature of |[E1sinsrom BrnpFomn (0462800 O007B380 i
. .)] TBitmarPropertiesDla BmpProp O045FBED OOO7BECA ComCils
DeDe is the ability to list TBrush Graphics O04140F4 00000 Commetl
TBubten St 00420814 0DDDDOO ey
aII the event handlers TButtanControl StdCtrls 00420344 00000000 Consts
. . . TCanvas Graphics 00414104 00000000 Controls
associated with a certain 4 TeheckBon St 00421330 00D0OOOD e
form, whereupon double- {a Teueionien i Do oo |[be
clicking an event handler 3 TColorPakette Colers 00457064 00000000 uf|Ples
shows you an assembly
language dump of the [Figure 5: DeDe is a Delphi decompiler which can
relevant code. DeDe provide a frightening amount of information about
includes code signature the internals of your apps. Parts of DeDe are based
files for the various VCL around the DCU32INT utility which understands the
libraries (VCL40, VCL50, internal format of Delphi's 32-bit DCU files.
etc) making it possible for
the utility to automatically recognise specific library calls in the disassembled execut-
able. This is akin to the so-called FLIRT code recognition capabilities of IDA Pro
(www.datarescue.com). One thing which DeDe has but IDA Pro lacks is the ability to
automatically recognise try..finally and try..except blocks in the disassembled
code. DeDe can also regenerate the .DFM, .PAS and .DPR files associated with a project,
but obviously, the .PAS files only contain assembler code! The program will also gener-
ate symbolic reference files which can be used with IDA Pro, or with another popular
disassembler, W32DASM.

But what of DCU files? DeDe includes a couple of utilities for dumping .BPL/.DPL files
and .DCU files. A disassembled DCU file looks perhaps a little messier than it might; for
example, the implicit ‘this’ parameter to methods of a class is listed as a formal parame-
ter when dumping method bodies, but nevertheless DeDe is a great time-saver for
those who enjoy poking around ‘under the hood’. The software is freely download-
able, although it's a shame the author hasn’t released source code.

Truth to tell, it matters not a jot that the DeDe author hasn’t released source code.
Why? Because the DCU-munching part of DeDe is based around DCU32INT, and
complete source code for that s available. If you need more information on the innards
of DCU files and want to write DCU disassemblers for yourself, take a look at
http://monster.icc.ru:8080/~alex/DCU/index.eng.html which is the home of DCU32INT.
It's so named because it takes a 32-bit Delphi DCU file and spits out an .INT file which
describes the interface part of the unit and generates assembler code corresponding to
the implementation part. (Apparently DCU32INT came out of the FlexT project which
formed the author’s doctoral thesis. FlexT is a way of describing the internals of an arbi-
trary binary file in a formal way.) DCU32INT is fast, free, recovers a lot of interesting
information from a DCU file and the price is definitely right! If you know of any other
DCU peeking utilities, please let me know.

The Delphi Magazine 55

see this clearly in Figure 4 which
shows a magnified view of the
resulting selection rectangle.
Other effects can be easily
achieved. For example, if you want
to have a double-thickness selec-
tion rectangle, then you could add
the following statement to the
LineDDAProc routine immediately
after the existing SetPixel call:

SetPixel(Canvas.Handle, X+1,
Y+1, ColorToRGB(C));

This would draw an additional
pixel immediately below and to the
right of the existing one. With this
approach, you’d also have to
modify the code inside SetHotRect
which is responsible for erasing
the existing selection rectangle
whenever a new one is drawn. In
fact, if you wanted to go the whole
hog and create a general purpose,
reusable, component to imple-
ment an animated selection rectan-
gle, then it would be a good idea to
implement a LineThickness prop-
erty together with a DotPattern
property to specify what pattern of
dots and dashes are required.
Needless to say, this is left as an
exercise for the reader!

Another approach, favoured by
Mark Miller of CodeRush fame, is to
use a completely different way of
drawing animated selection rect-
angles. In CodeRush, Mark uses a
series of carefully designed bitmap
masks which are combined with
the current screen content and
then blitted onto the canvas. This
is a more complex approach, but
arguably gives more professional
results, provided you don’t mind
having a fixed line thickness in
your selection rectangle.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level work. He is the Technical
Editor of Developers Review, also
published by iTec. Email Dave at
TechEditor@itecuk.com

56 The Delphi Magazine Issue 63

